#### Énoncés

#### Exercice 1

- 1. Écrire la décomposition en facteurs premiers des nombres suivants :
  - **a**] 60

**c]** 421

**e]** 943

**b**] 117

**d]** 512

- f] 113 256
- 2. Utiliser la décomposition en facteurs premiers pour réduire la fraction  $\frac{1204}{258}$

### **Exercice 2**

Parmi ces couples d'entiers, déterminer ceux qui ont un diviseur commun autre que 1.

a] 135 et 120

c] 114 et 63

**bl** 46 et 124

d] 273 et 41

## **Exercice 3**

Ysarn n'a utilisé sa calculatrice qu'une seule fois pour savoir que 2600 et 54713 n'ont aucun diviseur commun autre que 1.

Comment a-t-il raisonné?

# **Exercice 4**

Deux ampoules clignotent. L'une s'allume toutes les 5 min 06 s et l'autre toutes les 6 min 14 s.

À minuit, elles s'allument ensemble. Déterminer l'heure à laquelle elles s'allumeront de nouveau ensemble.

# **Exercice 5**

Un artisan souhaite recouvrir une terrasse rectangulaire de 4,2 m de large et de 6,16 m de long à l'aide de dalles carrées identiques sans faire de découpe.

- Déterminer si l'artisan peut utiliser les dalles suivantes.
  Si oui, préciser le nombre de dalles nécessaires pour couvrir la terrasse.
  - al Dalles de 2 cm de côté.
  - **b**] Dalles de 10 cm de côté.
- 2. Quelle sera la taille maximale, en nombre entier de cm, des dalles ?

Préciser le nombre de dalles nécessaires.

## Corrigés

### **Exercice 1**

1. a) 
$$60 = 2^2 \times 3 \times 5$$

**b**] 
$$117 = 3^2 \times 13$$

**d**] 
$$512 = 2^9$$

e] 
$$943 = 23 \times 41$$

f] 
$$113\ 256 = 2^3 \times 3^2 \times 11^2 \times 13$$

2. On a: 
$$\frac{1204}{258} = \frac{2 \times 2 \times 7 \times 43}{2 \times 3 \times 43}$$
$$= \frac{2 \times 7}{3}$$

d'où 
$$\frac{1204}{258} = \frac{14}{3}$$

### **Exercice 2**

a] Comme le chiffre des unités de 135 et 120 est 0 ou 5 alors ces nombres sont divisibles par 5.

135 et 120 ont un diviseur commun autre que 1.

b] Comme le chiffre des unités de 46 et 124 est 0, 2, 4, 6 ou 8 alors ces nombres sont divisibles par 2.

46 et 124 ont un diviseur commun autre que 1.

c] 1+1+4=6 et 6 est divisible par 3 donc 114 est divisible par 3.

6 + 3 = 9 et 9 est divisible par 3 donc 63 est divisible par 3.

114 et 63 ont un diviseur commun autre que 1.

d] On sait que 41 est un nombre premier, or 273 n'est pas un multiple de 41.

41 et 273 n'ont pas de diviseur commun autre que 1.

# **Exercice 3**

On a 2600 =  $26 \times 100$  donc  $2600 = 2 \times 13 \times 10 \times 10$  d'où  $2600 = 2^3 \times 5^2 \times 13$ .

Ysarn a vu que 54713 n'était divisible ni par 2 ni par 5.

Ensuite, il lui a suffi de taper 54713:13 sur sa calculatrice pour voir que 54713 n'est pas divisible par 13.

Par conséquent 2600 et 54713 n'ont pas de diviseur commun autre que 1.

#### **Exercice 4**

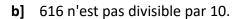
Convertissons ces deux durées en secondes :

$$5 \min 06 s = 306 s$$

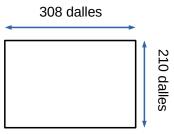
On a 
$$306 = 2 \times 3^2 \times 17$$

et 
$$374 = 2 \times 11 \times 17$$

Le plus petit multiple que ces deux nombres ont en commun est  $2 \times 3^2 \times 11 \times 17 = 3366$ .


Au bout de 3366 secondes, les deux ampoules seront allumées, soit à 0h 56min 06s.

## **Exercice 5**


On a 4,2 m = 420 cm et 6,16 m = 616 cm. Il faut trouver le plus grand nombre qui divise à la fois 420 et 616.

**1.** a) On 420 : 2 = 210 et 616 : 2 = 308.

Oui, il est **possible** de choisir des dalles de 2 cm de côté. Il faudra utiliser 210 × 308 = **64 680 dalles**.



Comme on souhaite éviter les découpes, alors il n'est **pas possible** d'utiliser des dalles carrées de 10 cm de côté.



2. Les décompositions en facteurs premiers de 420 et 616 sont :

$$420 = 2^2 \times 3 \times 5 \times 7$$

$$616 = 2^3 \times 7 \times 11$$

Le plus grand diviseur commun de 420 et 616 est donc  $2^2 \times 7 = 28$ .

Par conséquent l'artisan doit choisir des dalles de 28 cm de côté.

Le dallage formera un rectangle de 15 dalles sur 22 dalles, soit au total  $15 \times 22 = 330$  dalles